Model Calculations and Proof of Concept Simulations - Biological Sequence Alignment

MODEL CALCULATIONS

The example under consideration is


The Row 0 and Column 0 are assumed to be known.

Calculating Row 1
w[j] = max ((T[i-1,j] + f(ai , '-'), (T[i-1,j-1] + f(ai , bj))
w[1] = max((T[0,1] – 1), (T(0,0) + f(a1, b1)) = 0
w[2] = max((T[0,2] – 1), (T(0,1) + f(a1, b2)) = -1
w[3] = max((T[0,3] – 1), (T(0,2) + f(a1, b3)) = -2
w[4] = max((T[0,4] – 1), (T(0,3) + f(a1, b4)) = -3
w[5] = max((T[0,5] – 1), (T(0,4) + f(a1, b5)) = -6
w[6] = max((T[0,6] – 1), (T(0,5) + f(a1, b6)) = -5
w[7] = max((T[0,7] – 1), (T(0,6) + f(a1 , b7)) = -6
w[8] = max((T[0,8] – 1), (T(0,7) + f(a1, b8)) = -7

z[j] = w[j] + y[j]
z[1] = w[1] -y[1] = w[1] +1 = 0
z[2] = w[2] -y[2] = w[2] +2 = 0
z[3] = w[3] -y[3] = w[3] +3 = 0
z[4] = w[4] -y[4] = w[4] +4 = 0
z[5] = w[5] -y[5] = w[5] +5 = 0
z[6] = w[6] -y[6] = w[6] +6 = 0
z[7] = w[7] -y[7] = w[7] +7 = 0
z[8] = w[8] -y[8] = w[8] +8 = 0

(Compare with x_reg in the output)

T[1,1] = x[1] + g[1] = x[1] - 1 = -1
T[1,2] = x[2] + g[2] = x[2] - 2 = -2
T[1,3] = x[3] + g[3] = x[3] - 3 = -3
T[1,4] = x[4] + g[4] = x[4] - 4 = -4
T[1,5] = x[5] + g[5] = x[5] - 5 = -5
T[1,6] = x[6] + g[6] = x[6] - 6 = -6
T[1,7] = x[7] + g[7] = x[7] - 7 = -7
T[1,8] = x[8] + g[8] = x[8] - 8 = -8

Compare with outputs y0 to y7 in the simulated output. Row 1 values are calculated.

Simulation of Row 1
 Row 1 values can be checked to be correct.(click to enlarge)

Calculation of Row 2

Row 2
w[j] = max ((T[i-1,j] + f(ai , '-'), (T[i-1,j-1] + f(ai , bj))

w[1] = max((T[1,1] – 1), (T(1,0) + f(a2, b1)) = max(-2,-2) = -2
w[2] = max((T[1,2] – 1), (T(1,1) + f(a2, b2)) = -2
w[3] = max((T[1,3] – 1), (T(1,2) + f(a2, b3)) = -1 (note: f(a2, b3) = 1, match)
w[4] = max((T[1,4] – 1), (T(1,3) + f(a2, b4)) = -4
w[5] = max((T[1,5] – 1), (T(1,4) + f(a2, b5)) = -5
w[6] = max((T[1,6] – 1), (T(1,5) + f(a2, b6)) = -6
w[7] = max((T[1,7] – 1), (T(1,6) + f(a2, b7)) = -7
w[8] = max((T[1,8] – 1), (T(1,7) + f(a2, b8)) = -8

z[j] = w[j] - y[j]
z[1] = w[1] -y[1] = w[1] + 1 = -1
z[2] = w[2] -y[2] = w[2] + 2 = 0
z[3] = w[3] -y[3] = w[3] + 3 = 2
z[4] = w[4] -y[4] = w[4] + 4 = -4
z[5] = w[5] -y[5] = w[5] + 5 = -5
z[6] = w[6] -y[6] = w[6] + 6 = -6
z[7] = w[7] -y[7] = w[7] + 7 = -7
z[8] = w[8] -y[8] = w[8] + 8 = -8
(Compare with w_x_reg in simulated output)

After parallel prefix

x[1] = max( z[1]) = -1
x[2] = max( z[1], z[2]) = 0
x[3] = max( z[1], z[2], z[3]) = 2
x[4] = max( z[1], z[2], z[3], z[4]) = 2
x[5] = max( z[1], z[2], z[3], z[4], z[5]) = 2
x[6] = max( z[1], z[2], z[3], z[4], z[5], z[6]) = 2
x[7] = max( z[1], z[2], z[3], z[4], z[5], z[6], z[7]) = 2
x[8] = max( z[1], z[2], z[3], z[4], z[5], z[6], z[7], z[8]) = 2
(Compare with x_reg in the output)

T[1,1] = x[1] – g[1] = x[1] - 1 = -2
T[1,2] = x[2] – g[2] = x[2] - 2 = -2
T[1,3] = x[3] – g[3] = x[3] - 3 = -1
T[1,4] = x[4] – g[4] = x[4] - 4 = -2
T[1,5] = x[5] – g[5] = x[5] - 5 = -3
T[1,6] = x[6] – g[6] = x[6] - 6 = -4
T[1,7] = x[7] – g[7] = x[7] - 7 = -5
T[1,8] = x[8] – g[8] = x[8] - 8 = -6
Compare with outputs y0 to y7 in the simulated output. Row 2 values are calculated.




































The other values are calculated and documented in this table.










They are in conformance with the values obtained in simulations.


Comments

Popular posts from this blog

Setting up atalanta ATPG to work on Linux

Sparse matrix - 3 tuple representation

Generating 16k ROM using Xilinx IP COREGEN and simulating it in modelsim